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Abstract

Using the slender inclusion model developed earlier the
elastostatic interaction problem between a penny-shaped crack
and elastic fibers in an elastic matrix is formulated. For a
s ingle set and for multiple sets of fibers oriented perpendic-
ularly to the plane of the crack and distributed symmetrically
on concentric circles the problem is reduced to a system of
singular integral equations. Techniques for the regulariza-
tion and for the numerical solution of the system are outlined.

"For various fiber geometries numerical examples are given and
distribution of the stress intensity factor along the crack
border is obtained. Sample results showing the distribution
of the fiber stress and a measure of the fiber-matrix inter-
face shear are also included.

1. INTRODUCTION

The general problem of an elastic matrix containing a

penny-shaped crack and reinforced by filaments of finite

length was introduced in [1] and [2]. In this problem the

external loads were applied to the matrix at "infinity" and

there were severe stress concentrations around the end points

of the filaments, meaning that the load transfer from the ma-

trix to the filaments took place mainly around the ends of the

filaments. On the other hand, if the medium containing the

crack is a fiber-reinforced composite with fibers extending

into the loading grips, outside the stress perturbation zone

*This work was supported by NSF under the Grant GK-42771X and
NASA Langley Research Center under the Grant NGR-39-007-011.
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of the crack the fiber-matrix interface shear will be zero.

In this case the region of load transfer between the fiber

and the matrix will be restricted to the neighborhood of the

crack (approximately four crack diameters along the fiber),

and the nature of the governing integral equations will be

somewhat different than that of the filament problem.

In this paper the problem of a fiber-reinforced elastic

matrix containing a penny-shaped crack will be formulated and

solved under certain simplifying assumptions regarding the

geometry of the medium. The main assumptions are (a) the

crack is a plane circular (penny-shaped) internal crack;

(b) the fibers are circular elastic cylinders which are per-

fectly bonded to the matrix, are oriented perpendicular to

the plane of the crack, and are symmetrically distributed on

circles concentric with the crack; (c) the composite system

is loaded perpendicular to and away from the crack; (d) the

fiber diameter is relatively small compared to other lateral

dimensions so that the assumption of local axisymmetry in

fiber stresses in considering the fiber-matrix displacement

compatibility and the use of the filament model developed in

[1] are justified; and (e) the Poisson's ratios of the matrix

and the fiber are equal so that the reinforcing fiber may be

replaced by an auxiliary inclusion having the elastic con-

stants Ef - E and v and by a layer of body forces [1], where

E,v are the elastic constants of the matrix and Ef is the

Young's modulus of the fibers. The technique developed in the

paper is quite straightforward and may easily be applied to
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any number of fiber systems each distributed symmetrically

around the crack. As the results indicate, when the number

of fibers is increased the stress state around the leading

edge of the crack approaches an axisymmetric one. Thus re-

formulating the problem as an axisymmetric one, substantial

simplification in the solution can be achieved.

2. FORMULATION OF THE PROBLEM

First we consider a simple set of fibers distributed

symmetrically around the crack as shown in Figure 1. As in

[2] the unknown function in the problem is the layer of body

forces Z(z) imbedded on the fiber-matrix interface which can

be obtained from the displacement or strain continuity con-

dition along the interface. If Z(z) is the layer of body

forces acting on the matrix then the cylindrical auxiliary

fiber of infinite length is subjected to axial surface trac-

tions of magnitude -Z(z). Assuming a fixed-grip type of load--

ing at infinity the equilibrium condition of the auxiliary

fiber gives

2 o Ef-E 2 f
Tr 0 2 - 2ror f Z(t)dt - r 2 a (z) = 0 (1)

E oz 0

where r0 is the fiber radius, a0 the stress acting on the ma-

trix dt z = T-, of  the stress acting on the auxiliary fiber,

and E and E the moduli of the fiber and the matrix, respect-

ively. From (1) the strain of the auxiliary fiber may be

expressed as

f (z) - (z 0 2 m Z(t)dt. (2)
z E -E E r (Ef-E) z
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The strain in the matrix Ezm may be obtained from the

superposition of the solutions of four problems shown in

Figure 2. Thus, the integral equation for Z may be obtained

by writing

m a b c + 6zd f
EZ = + Z + Z = CZ (-m<Z<°) "(3)

Similar to the derivation given in [2], the strains

a d
Ez " '':z may be expressed as (Figures 1 and 2)

za O /E, (4)

EC(z)= EC- o t-z + kc(z,t) Z(t)dt,(-<z<o), (5)

k2ro E(k)-l 1 2ro-Pok (z,t) - +c p t-z pO t-z

2ro y(t-z)
+ o [2E(k) - K(k)]

P0
n 1

+ir (t-z)E 2 23/2 (1-2y

i=2 [di. + (t-z) 2]

+ 3y(t-z) 2

2 - 2)
d.2 + (t-z)

1

y = 1/(3-4v), C1 = 4T(1-v)/[(1+v)(3-4v)],

k = 2ro/P o, p0
2 = 4r 2 + (t-z) 2 ,

= b[2(1-cos 2 ri-1)) Y2, (i = 2,..,N)

z b (r,z) 1+- (2/4 ) o [(l -2 )F (r, zl) + z G (rlzl)l

( Iz >0), (6)
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z d (r,e,z) = - (2/Tr) Z a b cos(nN)*
z E n nn=0

*[(1-2v) F (r, z ) + IzIG n(r, Iz )] ,( z >0) (7)

Fn(rz) = ios. JnN (rs)JnN + 3 /2 (s)e
- szds,(z>0;n=1l ,2...)(8)

G (r,z) = o s3 2 J nN(rs)JnN+ 3 /2 (s)e-szds,(z>0,n=0,l,2,..)(9)

S= 2-2N nN 2nN+) ( n-k (10)

nk=0 2n-2k+l

b 2- a o2 p(r,e)rdrde , (11)
rra

nN+1
b n 2 n+bnT )a 2 p(r, )( a) cos(nNO)drdO, (12)

ro a

p(r,e) = 4(- ) Z(t)dt =1 (1-2v + dt, (13)
T m mP

2 = r2 - 2br cos( N )+ b 2 + (14)
P N

where a is the radius of the crack which, in this paper, is

assumed to be the length unit, K(k) and E(k) are the complete

elliptic integrals, N is the number of the equally spaced fi-

bers around the crack, b is the distance of the fibers from

the crack center (Figure 1), and (r,e,z) are the cylindrical

coordinates shown in Figure 1, 0=0 corresponding to fiber 1.

Substituting now from (2) and (4-7) into (3) with r=b

and 6=0 we find am integral equation of the following form to

determine the unknown function Z(z):

I" Z(t) dt + Im k(z,t)Z(t)dt = f(z), (-m<z<m), (15)
00 t-z -'
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where f(z) is a known function and the known kernel k(z,t)

has an additional logarithmic singularity. after determining

the body force distribution Z(z), it was shown in [1] that the

quantities of more physical interest, namely the interface

shear as and the total fiber stress af may be obtained from

Ef

ys(Z) = - Ef E Z(z), (-o<z<o), (16)

af(z) = of (z) + ozm(z), (-m<z<m) (17)

where a is the stress in the auxiliary fiber and am in the matrix.

The matrix stress is obtained from the superposition shown in

Figure 3. Thus,

a m(z) = 0 + a ozb(bz) + o c(b,z) + o d(b,z),
Z  Z Z Z

(-m<<m) (18)

where

z b(b,z) = - o(2/Tr) [Fo(b,Izl) + IzIGo(b,lzl)], (19)

oz  (b,z) = 4( f) Z(t) (t-z)dt{ 21 2- 3/2
ao [r + (t-z) ]

+ 3(t-z) 2  N 1-2v
2 2 + Z [ 223/2

[r o 2  + (t-z) 2 5/ 2  i=2 [d. + (t-z) 3/2

3(t-z) 2

+ 2 + (t-z) 2 15/ 2  '  (20)
[di + (t-z) 1

d qo

" nn(bz) = (2/ )2  E an b n[F n(b,lzl) + IzlGn(b,lzl)].(21)

Other quantities of physical interest are the crack open-

ing displacement u z(r,, + 0) and the stress intensity factor

along the leading edge of the crack. Referring to [2]
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and Figure 2 uz may be expressed as

uz(r,e,+0) = uzb (r, + 0) + uzd(r,O,+0)

= 2(1-vE (2/) [aH (r,0)

+ E ab ncos(nNO) H (r,0)], (O<r<l,
n=0

0<<2T), (22)

where

H (r,z) = so s- JnN (rs)JnN+ 3 /2 (s)e-zsds, (z>O). (23)

From (see [3])

nN( 2
H (r,+0) = rN 1-r2) , (O<r<l), (24)

/Z r (3/2)

0, (1<r<o)
we obtain

( r( 1 )2 2( 12 2 C2 n N
u (r,+0) 4(1-vE (1-r2  [o + E anbn rn N cos(nN)],z , - o  sr) n

n=0

(O<r<1,0<0<27). (25)

Using now the definition of the stress intensity factor as

kl(e) =lim V2(r-7) om (r,e,0)
r-+l

S- lim -E 2(1-r) u m(r,O,+O), (26)

r-1 2(1-v 2) r z

we find

kl (e) =(2/T °r1a + Z a b cos(nNe)], (0<(<2,) (27)n=O n n
n=0

Note that because of symmetry the forward and anti-plane shear

components of the stress intensity factor '(k2 and k3 ) will

be zero.
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3. MULTIPLE SETS OF FIBERS

The analysis developed for a single set of fibers may

easily be extended to multiple sets distributed with equal

angular spacings on concentric rings around the penny-shaped

crack. Consider the geometry given in Figure 3 and again let

the fibers be oriented perpendicular to the plane of the crack.

Let M be the number of concentric rings carrying the fibers,

bj,(j=l,..,M) the radius of the jth ring, Nj,(j=1,..,M) the

number of the fibers on the jth ring*, and rj and Ej,(j=l,..,M)

the radius and the Young's modulus of the fibers in the jth

set. The unknown functions will now be the layers of body

forces Z (z), (j=l,..,M) imbedded in the fiber-matrix inter-

faces and the strain continuity conditions expressed for a

representative fiber in each set will give the necessary sys-

tem of integral equations to determine these function. Thus,

in this case (dropping the subscript z) the condition (3) is

modified to read

f a b c
C (z) = Ejm(bj,6j,z) = Ea(z) + Eb(bj,z) + E (bj ij,z)

+ ejd(bj, j ,z), (j=l,..,M; -m<z<c) (28)

Here it is assumed that the numbers N. are either equal or
multiples of each other and the fibers are distributed in

such a way that the body forces (or the fiber stresses) in
each set is the same. Otherwise, any deviation from symmetry
will cause the fiber stresses in a given set to be different
and the total number of unknown functions to be much greater
than the number of sets M.
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where ej is the angular orientation of the representative

fiber in the jth set. The strain in the auxiliary fiber,

f f
:j may be obtained- from (2) by replacing EZ , Ef, and Z

f
by Ej , Ej, and Z., respectively. Referring to Figures 2

and 3, it is clear that in the superposition the axisymmet-

ric strain components in the matrix £a and eb (which depend

only on a ) will be the same as that found for the single

set of fibers in the previous section and are given by (4)

and (6).

Referring again to Figures 3 and 2c, if we let the

axial strain in the matrix at a location of a representa-

tive fiber from the jth set (i.e., at r=bj, 8=e ) due to

all the body forces Zi(z) imbedded in the fiber-matrix

interfaces on the ith ring be Ei. (bj,ej,z), the third

term in (28) becomes

M
cc(bj j,z) =  i=l i (bj , ,z),

(j= ,..,M; -o<z<oo). (29)

Similarly,

(b , j,z) = i l Ji(bj,e. ,z), (j=l,..,M; -- <z<-) (30)
Si 1

where d.i is obtained from (7-14) by replacing d , an' bn,
31 zz n n

N, r, e in (7-9) by E. d aj b , Nj, bj, Oe; bo , P, b , N,

ro,Z in (11-13) by bjo , pj, b. , Nj, rj, Zj; b, 0, N in (14)
30 3o j n 3 3 3

by b., 8-ej , Nj, and cos(nNO) in (12) by cos[nN.(6-6.)]. Note

that Ei and Ei are dependent on Zi(z) only.

To evaluate ejc the interaction of two different fibers

at two arbitrary locations has to be established. We first
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observe that cSj which appears in (29) is given by (5). For

this all one needs to do is to replace Ezc, b, Z, N, po, and

ro in (5) by E jj bj Zj, Nj, pj and rj, respectively. Re-

ferring now to Figures 3 and 2c and the basic concentrated

load solution [1,4], the axial strain at the point r = bj,

0 = 0j, z due to N. line loads 2riZi (t), acting along r = b i ,

0 =  , = t, (m = 1,.. ,N, -0o<t<oo)im 1 N i

may be expressed as

N.
Tr i  CO 1 -2y

Eji (bj ,j , z ) - f Z (t)(t-z) 1-2yEC1  m= [d 2 + (t-z) 2 3/2
im

2
2 (t-z)5/2 dt, (ifj, -o<z<o) (31)

[d. + (t-z)2 5/2

where

y = /(3-4v), C1  = 4T(l-v)/[(l + v) (3-4v)],

d.2  = b.2  + b. 2  - 2b.b. cos(@i + 2 m Ni ), (m = 1,..,N
1m 3 1 3 1 i Ni

If we now substitute (with the necessary change in notation)

from(2, 4, 6, 29-31) into (28) we obtain a system of singular

integral equations of the following form for unknown functions

Z1 " ,.. ,ZM:

1 C Z (t) M
EC f - t-z dt + f Z k ji(z,t)Zi(t)dt = fj(z),

EC t-z 11 i=l 1

(j = 1,..,M; - <z< ). (32)

where f. and kji, (i,j = 1,..,M) are known functions. After

solving (32) the interface shear stresses, the fiber stresses,

the crack surface displacement, and the stress intensity factor

may be obtained from expressions similar to (16), (17), (with

18-21), (25) and (27). For example, the stress intensity
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factor may be expressed as
M C

k1(2) =(2/){ o + E Z aj bj cos[nN j(6e-)]},(O<e<27) (33)
j=l n=O

where aj and bj are obtained from (10-13) by replacing an,

bn ,  N, p, b, 0, Z, ro  by aj , bjn , N., pj , b., -0., Z., r.,

respectively.

4. ON THE SOLUTION OF INTEGRAL EQUATIONS

The integral equations (15) and (32) represent special

cases of the following more general system:

Ag(x) + tB - (x dt + fo K(x,t)g(t)dt
ri -m t-x -co

= f(x), (-c<x<o), (34)

A = (aij), B = (b ij), g(x) = (gi(x)),

K(x,t) = (k ij(x,t)), f(x) = (fi(x)), (i,j = 1,..,n),

where the matrices A and B are constant and are such that

A+B and A-B are nonsingular, the known functions fi and k.i

and the unknown functions gi may be complex, and the kernels

kij satisfy the necessary regularity conditions at infinity.

The system of singular integral equations (34) may formally

be regularized as follows: Define the following holomorphic

functions:

G(z) 1 g(t dt, z = x + iy,G(z) 2 - t-z (35)

G(z), ZES
H(z) = {(A+B)- 1  (A-B)G(z), zeS-, (36)

G(z) = (G (z)), H(z) = (H.(z)), (j = l,..,n),

(A-B) -  = C = (c ij), (A+I)-1 = D = (d ij)
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In terms of the sectionally holomorphic functions H.(z) (34)

may be expressed as

H+ (x) - M-(x) = D[f(x) - fo K(x,t)g(t)dt]. (37)

The solution of (37) is [5]

H(z) = -i L [f(s) - fc K(s,t)g(t)dt] ds + P(z), (38)

where P(z) = (P (z)), (j=l,..,n) is an arbitrary (matrix) poly-

nomial which must be identically zero because of the condition

that F(z)+0 for Iz|+c. The solution of (34) may then be ex-

pressed as

g(x) = G+(x) - G-(x) = H+(x) - C(A+B)H-(x), (39)

giving

g(x) + f M(x,t)g(t)dt = p(x), (--<x<-) (40)

where

M(x,t) = (m (x,t)) = (D+C)K(x,t) + D-C K(st) ds,jk 2rri s-x

p(x) = (p(x)) D+C f(x) + D-C f(s) ds,
S2 2qi - s-x

(j,k = 1,..,n). (41.a,b)

It should be emphasized that the objective of the regulari-

zation process is "smoothing" the kernels. Thus the system of

singular integral equations (34) is reduced to that of Fredholm

integral equations given by (40). It is seen that if (34) con-

sists of its dominant part only, i.e., if K(x,t) = 0, then (40)

and (41.b) give the solution in closed form. If K is not zero

and the integral in (40) is one of the standard convolution
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types (see, for example, [6]) the solution of (40) may again

be obtained in closed form. Otherwise (40) may have to be

solved numerically.

From the view point of numerical analysis the procedure

outlined here which leads to (40) would be very appropriate

and convenient provided the kernels mij can be evaluated in

closed form. If these kernels too have to be evaluated numeri-

cally from the singular integrals given by (41.a), the technique

could be quite laborious. In this case the following simpler

and more direct approach may be preferable: Noting that

dt - 0, (-mC<x< ) (42)
St-x (42)

equation (34) may be expressed as

Ag(x) + B m g(t)-g(x) dt + fI K(x,t)g(t)dt
+ i 00 t-x -

= f(x), (--<x<-) (43)

It should be pointed out that because of the nature of the re-

lated physical problems, unlike the solution of the singular

integral equations defined on non-intersecting smooth arcs,

the solution of singular integral equations defined on infinite

lines and smooth closed contours are usually bounded and con-

tinuous functions. Hence, for the purpose of numerical analysis,

in the latter type equations the singularity of the kernel can

always be removed as in (43) and the resulting system can be

treated as ordinary Fredholm integral equations. Note that in

(43) for t=x the integrand in the second term becomes the deri-

vative of g(t) at x which is assumed to be bounded.
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In solving (43) one may still encounter numerical diffi-

culties because of: the fact that the support of the integral

equations is infinite. To overcome this usually a simple

change in variables such as the following would be sufficient:

t = tan 2 x = tan , (-m<(t,x)< ,

-1<(r,s)<l) (44)

Also, to improve the effectiveness of the numerical solution,

it is preferable to use a Gaussian-type integration formula

rather than one based on dividing the domain into equal sub-

intervals. In the type of problems under consideration an

appropriate integration formula would be the following Gauss-

Legendre formula:

1 n
fL F(r)dr = E w F(r), (45)

j=1

where

(r) = , w= 2 2 , (j =Pn(r, w (1-r.) 2 [Pn (r )] 2

After making the transformation (44), (43) becomes

B 1 g1 (r) - gl(s) drAg1 (s) + 1
Tr rs 2 rrr

tan- - tan cos2 2 2

+ K (s,r)gl (r) d2 r f (s) (-l<x<l) (46)
COS

where gl (s) = g(tanTs/2), etc. First it may be noted that the

regularity condition of the problem requires K(x,t) to decay

sufficiently fast so that the second integral in (46) is con-

vergent. Hence, the application of (45) to this integral will
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be straightforward. Unlike the Gauss-Chebyshev integration

formulas, in the application of Gauss-Legendre formula to the

solution of integral equations both variables si and r. are

taken to be the roots of the same'polynominal, i.e.,

Pn (si) = 0, Pn (r ) = 0, (i,j = l,..,n). (47)

this means that at i=j the second integral in (46) may need

some care. Observing that

gl(r) - gl(s) 2 dgl(r)
lim r s 2  Tr 7 dr
s-*r (tan 2 tan 2 -cos 2

this difficulty may easily be circumvented by replacing the

integrand in the second term for i=j by

2 gl(ri+1 ) - (g 1 (ri- 1 )

I ri+1  - ri 1

Thus, writing (46) at n locations si  one obtains a system of

n (matrix).equations for the unknowns gl(si), (i=l,..,n).

5. NUMERICAL RESULTS

Figures 4-13 show some of calculated results (*) Figure

4 shows a typical result giving the body force distribution

Z(z) for a single fiber,(i.e,N=l) obtained from (15). Note

that because of symmetry with respect to z=O plane Z is an

odd and the fiber stress of is an even function of z. A

sample result giving the distribution of the stress intensity

factor along the crack border for various values of N, the num-

ber of fibers in a single set is shown in Figure 5. As in the

Further results and the details of the analysis may be found
in [7].
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case of filament reinforcements, as N increases the 6-depend-

ence of the stress intensity factor decreases. Hence, for

large values of N, for the purpose of analyzing the effect of

the fiber reinforcement on the stress intensity factor, one

may treat the problem as being axisymmetric. This may be done

by assuming that the matrix is reinforced by a cylindrical

membrane having the same modules Ef as the fibers and an equi-

valent cross-sectional area (i.e., Nir 0 2). Figure 6 shows the

result of such an axisymmetric analysis where it is assumed

that N=16. It is seen that as the (fiber) distance b increases,

the effect of the reinforcement rapidly decreases, the stress

intensity factor ratio k/(2ao0 /T) approaching the value for

the penny-shaped crack without reinforcement. For smaller

values of b as the crack border approaches the fibers the prob-

lem cannot be treated as axisymmetric regardless of the number

N. However, the membrane reinforcement has a physical meaning.

In this case when the crack touches the reinforcement the power

of stress singularity (see equation (26)) becomes less than - ,

and therefore the stress intensity factor as defined by (26)

would be expected to go to zero. This trend is clearly seen

in Figure 6.

Figure 7 gives some idea about the reinforcement effect

of two fibers placed in different locations (b =1.4a , b2=1.5a

e1=0, e2 =0.47). In this and in the subsequent examples the two

sets of fibers are assumed to have equal radii (rl=r 2 =ro) and

stiffness4(E1 =E 2 =Ef). The effect of the number of fibers in
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each set is shown in Figure 8 where it is assumed that

bl=1.4a, b 2 =1. 5a, N1 =N2 =N, rl=r 2 =0.2a, Ef=130E, and 81=0,

2=I/4. It is seen that as N increases the e-dependence as

well as the magnitude of the stress intensity factor again

decreases. Typical results giving the distribution of the

body forces Z1 , Z2 and fiber stresses clf and a2 f for the

two fibers are shown in Figures 9 and 10. Ef=15E used in

these figures approximately correspond to steel-concrete com-

bination. Note that at distances beyond a few crack radii

Z1 and Z2 die out quite rapidly and alf and a2f approach the

va)ue of a oE f/E corresponding to the fiber stress in un-

cracked reinforced matrix.

In the case of multiple set of fibers too for large

values of Ni the problem may be treated as axisymmetric by

replacing the individual sets of fibers by equivalent elastic

cylindrical membranes. Figures 11-13 show some of the re-

sults obtained under this assumption for two sets of fibers.

In these examples the membranes are assumed to be equivalent

to 8 fibers in each set. Figure 11 shows the effect of the

fiber radius r1 =r 2 =ro and Figure 12 shows the effect of the

modulus ratio Ef/E on the stress intensity factor which is

seen to decrease with both increasing r° and increasing Ef/E.

Figure 13 shows the effect of the fiber distance b2 for a

fixed b1 on the stress intensity factor k1. The asymptote

shown by the dashed line is the stress intensity factor corre-

sponding to a single set of fibers at bl. It is seen that
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k1 rapidly approaches this asymptotic value as b2 increases.

This implies that the sets of fibers which may exist in the

composite beyond a certain distance from the crack would have

only a negligible effect on the stress intensity factor. The

figure also shows that as b2 decreases the reduction in the

stress intensity factor, k1 becomes more significant and again

k1 would approach zero as the distance from the crack front

to the reinforcing membrane goes to zero.

Comparing the results obtained in this paper for the re-

inforcing fibers with that found in [2] for finite filaments

itmay be remarked that there is considerable qualitative sim-

ilarity regarding the distribution of the stress intensity

factor. However, in the filament case the interface shear (or

the body force Z) is concentrated around the filament ends

and generally gives rise to filament stresses which are higher

than the stresses found in the fibers. As a result the re-

inforcement effect (measured by the reduction in the stress

intensity factor) of the filaments is relatively higher than

that of the comparably distributed fibers.
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Figure 1. Geometry for the penny-shaped crack in an elastic

matrix reinforced by symmetrically located elastic fibers.
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Figure 2. Superposition for the stresses and displacements

in the matrix.
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Figure 3. Geometry of the multiple set of fibers; M is the

number of concentric rings containing the fibers; in each

ring the fibers are equally spaced with< c<=27/N , N. being

the number of fibers in the jth ring.
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Figure 4. Distribution of body force Z(z) for Ef=130E,

v=0.35, ro=0.15a, and ( ): b=1.375a, (----- ):

b=1.50a, ( ): b=1.75a.
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Figure 5. Effect of the number of fibers N on the stress

intensity factor distribution along the crack border;

b=1.375a, ro=0.15a, v=0.35, Ef=130E.
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Figure 6. Effect of the fiber distance b on the stress in-

tensity factor for the axisymmetric case; N=16, ro=O.la,

E,=130E, v=0.35.



1.00-

7rkl _1

a 2 o

0.96- 

ro

/ \b

Sro /a

0.15

0.92 / 0.20
9 0.30

0 0.5 1.0
8/27T

Figure 7. Angular variation of the stress intensity factor

for reinforcement by two fibers; bl=1.4a, b2=1.5a, 01=0,

a2=0.4, E1 =E 2 =130E, v=0.35, r 1 =r 2 =ro , and ( ):

ro=O.15a, ( ): ro=0.2 a, ( ): ro=0.30a.
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Figure 8. Angular variation of the stress intensity factor

for two sets of reinforcing fibers; bl=1.4a, b2 =1.5a, e1 =0,
62 =r/4, E 1 =E2=130E, v=0.35, rl=r 2 =0.2a, N1 =N2=N8.
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Figure 9. Distribution of body forces for reinforcement

by two fibers; bl=1.5a, b2=1.6a, rl=r 2=0.4a, 1 =0, 62=0.2

E1 =E 2 =15E.
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Figure 10. Distribution of fiber stress af for reinforce-

ment by two fibers;bl=1.5a, b2 =1.6a, rl=r 2 =0.4a, e1 =0,

2=0.2.r, E=E2 =15E.
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Figure 11. Effect of fiber radius ro= r l =r 2 on the stress

intensity factor for reinforcement by two sets of fibers

obtained from the axisymmetric solution, N1 =N2=8, bl=1.4a,

b =1.6a, E1 =E =130E, v=0. 3 5 .
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Figure 12. Effect of modulus ratio Ef/E on the stress in-

tensity factor for reinforcement by two sets of fibers ob-

tained from the axisymmetric solution; E1 =E 2 =Ef , v=0.35,

N1 =N2 =8, b1 =1.25a, b 2 =1.5a, r l =r 2 = 0.la.
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Figure 13. Effect of fiber distance b2 on the stress in-

tensity factor for reinforcement by two sets of fibers ob-

tained from the axisymmetric solution; N1 =N 2 =8, E1 =E2
= 130E,

v=0.35, bI =1.25a, r,=r 2 = 0.1a.


